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116 C.P.ELLINGTON

Vorticity is continuously shed from the wings in sympathy with changes in wing
circulation. The vortex sheet shed during a half-stroke convects downwards with the
induced velocity field, and should be approximately planar at the end of a half-stroke.
Vorticity within the sheet will roll up into complicated vortex rings, but the rate of
this process is unknown. The exact state of the sheet is not crucial to the theory,
however, since the impulse and energy of the vortex sheet do not change as it rolls
up, and the theory is derived on the assumption that the extent of roll-up is negligible.
The force impulse required to generate the sheet is derived from the vorticity of the
sheet, and the mean wing lift is equal to that impulse divided by the period of
generation. This method of calculating the mean lift is suitable for unsteady
aerodynamic lift mechanisms as well as the quasi-steady mechanism.

The relation between the mean lift and the impulse of the resulting vortex sheet
is used to develop a conceptual artifice — a pulsed actuator disc — that approximates
closely the net effect of the complicated lift forces produced in hovering. The disc
periodically applies a pressure impulse over some defined area, and is a generalized
form of the Froude actuator disc from propeller theory. The pulsed disc provides a
convenient link between circulatory lift and the powerful momentum and vortex
analyses of the wake.

The induced velocity and power of the wake are derived in stages, starting with
the simple Rankine-Froude theory for the wake produced by a Froude disc applying
a uniform, continuous pressure to the air. The wake model is then improved by
considering a ‘modified’ Froude disc exerting a continuous, but non-uniform
pressure. This step provides a spatial correction factor for the Rankine-Froude theory,
by taking into account variations in pressure and circulation over the disc area.
Finally, the wake produced by a pulsed Froude disc is analysed, and a temporal
correction factor is derived for the periodic application of spatially uniform
pressures. Both correction factors are generally small, and can be treated as
independent perturbations of the Rankine-Froude model. Thus the corrections can
be added linearly to obtain the total correction for the general case of a pulsed actuator
disc with spatial and temporal pressure variations.

The theory is compared with Rayner’s vortex theory for hovering flight. Under
identical test conditions, numerical results from the two theories agree to within 3 9.
Rayner presented approximations from his results to be used when applying his theory
to hovering animals. These approximations are not consistent with my theory or with
classical propeller theory, and reasons for the discrepancy are suggested.

1. INTRODUCTION

The essence of flight is that wings impart downward velocity and momentum to the air, and
obtain a lift force by reaction. This downward air velocity — the induced velocity — influences
the relative airflow over the wings and hence their lift. For detailed calculations of the lift force
resulting from a given wing motion, some relation must be established between the induced
velocity and the lift. Furthermore, a substantial expenditure of energy per unit time is needed
to impart downward momentum to the air — the induced power requirement — and a relation
between the downward air motion and lift is also necessary to calculate this power.

Two theories, incomplete in themselves, together provide an approximate basis for the
conventional aerodynamic analysis of flapping flight. As discussed in paper I, this analysis is
composed of a force coefficient blade-element theory and a momentum theory. The wings are
divided into blade elements perpendicular to the span, and the instantaneous lift and profile
drag for each element are calculated from the force coefficients corresponding to the
instantaneous airflow around the element. The induced velocity component of the airflow is
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A VORTEX THEORY OF HOVERING FLIGHT 117

obtained from a momentum theory, by equating the lift force required for flight to the rate
of change of momentum necessarily imparted to the air. As a corollary to the momentum theory,
the induced power is usually estimated from the kinetic energy flux of the downward air motion.
The general equations for this aerodynamic analysis were first derived by Osborne (1951) for
flapping insect flight, and a similar treatment is also employed for bird flight (Pennycuick 1968,
1975; Tucker 1973). Such analyses invoke the quasi-steady approximation, and assume that
the force coefficients at any instant are those corresponding to steady motion at the same
instantaneous relative air velocity (paper I). The quasi-steady assumption is not essential for
the analysis, however: force coefficients can be defined for unsteady as well as steady motion.

For the most complete physical and analytical description of lift, we must turn to a vortex
theory of flight. The lift of a wing, and hence the lift coefficient, is governed by the circulation
of bound vorticity (paper IV). Vorticity is shed into the passing air as the lift and circulation
change during flight, and forms a vortex wake that corresponds to the downward air motion
treated by the momentum approach. By using the concept of circulation a vortex theory thus
relates the induced velocity to the wing lift, and unifies the two previous theories in a single
framework.

Vortex theories are not a new approach to animal flight mechanics. Cone (1968) first
presented a detailed discussion of the vortex wake produced by the flapping wings of an animal.
He developed the general equations for a vortex theory of flapping flight, but they proved too
cumbersome for practical application. Betteridge & Archer (1974) simplified the three
dimensional geometry and kinematics, and invoked the quasi-steady assumption, resulting in
a manageable vortex theory for fast flapping flight. Ellington (1978) reviewed the existing
theories for hovering flight and outlined a simplified vortex theory following in the wake, so
to speak, of classical propeller theories five decades old. More details of the theory were given
in Ellington (1980), including a novel correction for the energy losses associated with periodicity
of the vortex wake structure — the ‘tip losses’ of propellers. Vortex theories of hovering and
forward flight have also been developed by Rayner (19794, b), and are summarized in Rayner
(19799).

The vortex theories of Ellington and Rayner are but partially complete. They provide a
method of calculating the mean lift and induced power for a given circulation profile during
the wingbeat — the circulation as a function of spanwise position and time — for unsteady as
well as quasi-steady aerodynamic mechanisms. However, the induced velocity is not added to
the wing motion to estimate the resulting unsteady circulation and instantaneous lift. The
theories therefore rely on postulated circulation profiles instead of actually solving for the profile
consistent with the wing motion. The justification for this approach is that measurements of
the angle of attack and camber for the wing elements are extremely scarce, so details of the
wing motion itself are not sufficiently known in most cases. Instead of assuming a given
circulation profile, Phlips et al. (1981) assumed a simple wing motion, and were the first to
succeed in developing a fu]l unsteady vortex theory for flapping flight with specified kinematics.
They ignored the downward movement of vorticity in the wake, which is a reasonable
approximation for fast forward flight, but this prevents application of their theory to slow and
hovering flight.

Although a complete vortex theory is obviously desirable for a study of hovering flight, it
is not possible at present. Given the inadequate kinematic data, an assumption must be made
either about the circulation profile or the wing motion. It is most probable that a complete
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118 C.P.ELLINGTON

theory must also include the effects of leading edge vortex shedding during the wingbeat (paper
IV). Our knowledge about vortex shedding from sharp leading edges, and the subsequent
formation and stability of leading edge bubbles, is very limited, and much experimental work
must be done before these effects can be incorporated into a complete theory. For the present,
it thus seems more appropriate to postulate how the circulation around the wing elements is
likely to vary during hovering flight, based on the discussions of paper IV. The vortex theory
of Ellington (1978, 1980) was designed to calculate the mean lift and induced power for such
circulation profiles, and will therefore be used in paper VI to provide estimates for the insects
of this study. Although the theory could only be outlined in the earlier publications, it forms
an integral part of this work and so is presented here in detail. Rayner (19794, ¢) did not draw
comparisons between his vortex theory for hovering flight and mine of 19778, and my treatment
of wake periodicity was published just after his papers, so a comparison of the two theories
will also be given.

2. THE MEAN LIFT

In this section, the first part of the vortex theory, equations are derived for the mean
circulatory lift produced by the flapping wings in hovering flight. The analytical procedure
is identical to that for the blade-element theory which was discussed in papers I and IV. It
is assumed that the total force on a wing is the sum of the forces acting on a number of spanwise
wing elements, each of which can be represented by a two dimensional aerofoil experiencing a
relative velocity composed of the flapping velocity and the induced velocity of wake vorticity.
Knowledge of the induced velocity is taken for granted in developing the equations of this
section, but the actual derivation of it cannot be achieved until the second part of the theory.

Thoughout the theory, it will be assumed that the wing motion is confined to the stroke plane.
"This is not a necessary assumption, but it greatly simplifies the mathematics without introducing
serious errors.

F' ' F'
(@) A (6) L
\
— -_
P =
M U

T

Fi1curE 1. (a) Kinematic definitions and the net aerodynamic force ' on a wing element. The total drag is referred
to in the second part of the theory. (4) Resolution of F” into circulatory lift L’ and profile drag Dy, with respect
to the relative velocity U,, which is given by the vector sum of the flapping velocity U and the induced velocity
w,.

Figure 1a shows a wing element at that moment in the downstroke when the wing span is
horizontal: that is, the positional angle ¢ is zero according to the kinematic definitions in paper
ITI. The flapping velocity U is at the stroke plane angle f to the horizontal, and the geometrical
angle of attack is «. The wing element produces a net aerodynamic force F’, where the prime
notation again denotes a force per unit span. The motion of the wing element relative to the
air is given by the vector sum of the flapping velocity U and the induced velocity w, of vorticity
in the wake (figure 154). As will be shown later, this induced velocity must be very close to
vertical in hovering. The relative velocity U, experienced by the wing element thus makes a
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A VORTEX THEORY OF HOVERING FLIGHT 119

smaller angle g, to the horizontal than does the flapping velocity, and the angle of attack of
the relative wind a, is similarly reduced to a— (8—f;).

The aerodynamic forces produced by the element are determined by the direction and
magnitude of the relative velocity, so the net force F” is usually resolved into components relative
to U,. The force component parallel to U, is the profile drag of the element Dy, and that
perpendicular to U, is the circulatory lift L. The discussion of aerodynamic mechanisms in
paper IV emphasized the bound vorticity of the wing necessary for circulatory lift, but pointed
out the problems in actually calculating the instantaneous lift from the linearized equations of
unsteady aerofoil theory. This difficulty is partially resolved by the vortex theory, which derives
the mean circulatory lift from the wake vorticity that must be shed as the wing circulation changes
during the cycle. Bound and wake vorticity are related, of course, so we are just looking at
the same problem from a different viewpoint.

2.1. The vortex sheet from circulatory lift

Figure 2a shows the vortex wake created by the changes in circulation around a pair of wings
during a half-stroke. The wing circulation I" measures the strength of the bound vorticity, which
may vary with radial position r along the wing and with time ¢. As discussed in paper IV,

(a) (b)
shed

vorticity

, r

N\ % 3
i\ N U

trailing ¢ —bound

vorticity ™ vorticity area A,

K
L(r,t)

Ficure 2. (a) Creation of the vortex sheet corresponding to changes in circulation around wing elements during
a half-stroke. (4) At the end of the half-stroke the resultant vortex sheet is approximately planar, forming an
angle B, with the horizontal.

‘starting’ or ‘stopping’ vorticity must be shed from the trailing edge of each wing element in
sympathy with any changes in circulation during the half-stroke. This ‘shed vorticity’, of
strength — (3I'/d¢) d¢, is deposited along radial paths in the 3-dimensional motion of hovering.
If the circulation also changes between wing elements at r and r+dr, then trailing vorticity’
of strength — (017/dr) dr must be passed into the wake. This vorticity is laid down tangential to
the wing motion and thus forms circular vortex lines in hovering: it corresponds to the trailing,
or tip, vortices produced by conventional aeroplane wings. Trailing vorticity does not enter
into the consideration of two dimensional aerofoils, for which the circulation is constant along
the infinite span, but it must be produced by real wings. Even if the circulation is constant
along a wing of finite span it must fall to zero at the ends of the wing, and trailing vortices
will be created there. At the end of the half-stroke the remaining bound vorticity is shed, freeing
the vortex sheet from the.wing (figure 2b). The net result of the wing action is, therefore, the
generation of a vortex sheet with continuously distributed radial and tangential vorticity.
After each region of the sheet is created, it moves downwards because of the induced velocity
of the wake vorticity. Thus the final form of the sheet is governed by the fact that elements
of vorticity shed near the beginning of the half-stroke convect downwards a greater distance
than those shed near the end. The induced velocity may vary over the cycle, and the resulting
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120 C.P.ELLINGTON

three dimensional vortex sheet will form a limited area on some irregular helicoid. However,
an approximation can be invoked to reduce the geometrical complexity of the sheet. Results
from paper VI show that the induced velocity is substantially smaller in general than the
flapping velocity, so regions of the sheet can move but a short distance during the half-stroke.
The resulting helicoidal sheet is only slightly developed, therefore, and may be considered as
approximately planar: although an entire helicoid cannot be represented by a plane, limited
areas of it can be without serious distortion. The plane containing the vortex sheet is parallel
to the mean relative velocity of the wings, and the angle between this plane and the horizontal
can be denoted by the relative stroke plane angle B, (figure 2b). The area swept by the wings in
the stroke plane is @R?, where @ is the stroke angle in radians and R is the wing length, and
the area A4, of the vortex sheeet in the relative stroke plane must equal @R? cos f/cos 3, if the
induced velocity w, is vertical.

Fiure 3. (a) Roll-up of the vortex sheet during a half-stroke. The vorticity rolls up into a core around the perimeter.
(b) All of the vorticity created during the half-stroke is shown concentrated into two ‘rings’ enclosing a total
area A, The circulation of each ring is I'pay-

A vortex sheet is unstable and will roll up at the edges under the influence of its own induced
velocity field. This phenomenon is well known for the ‘horseshoe’ vortex system behind
conventional aeroplane wings: the vorticity shed at the beginning of motion rolls up into a
concentrated starting vortex, and the trailing vorticity rolls up into two discrete tip vortices
about 13 chord lengths behind the wing (Milne-Thomson 1973). The rate of roll-up is not
known, however, for the vortex sheet created during a half-stroke. Figure 3 shows the extreme
case where the sheet rolls up almost as soon as it is generated. This results in two irregular vortex
‘rings’ at the end of the half-stroke. All of the vorticity produced by the wings must be
concentrated around the perimeter of these rings, enclosing a total area A; which is less than
the sheet area 4,. Itis likely that a viscous core containing the rolled-up vorticity develops around
the ring perimeter, but the exact shape of this core and the distribution of vorticity within it
are not known. The actual state of the vortex sheet will be somewhere between completely
rolled-up rings at one extreme and a planar sheet at the other. Fortunately, the impulse and
energy of a vortex sheet in an inviscid fluid do not change with rolling up, so the exact state
of the sheet will not affect the theory.

In his three dimensional flow visualization experiments on the fling mechanism, Maxworthy
(1979) observed the formation of well-defined tip vortices during the half-stroke. These vortices
were very similar to those around delta wings at high angles of incidence: the ‘bound’ vorticity
moved axially along the leading edge separation vortex produced by the fling, and was
deposited in the wake as a strong tip vortex. Maxworthy suggests that this spanwise transport
of vorticity stabilizes the leading edge vortex bubble, and therefore prevents the abrupt loss
of fling circulation by the usual two dimensional stalling. This interpretation is consistent with
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A VORTEX THEORY OF HOVERING FLIGHT 121

the known characteristics of delta flows, and it may apply more generally to the leading edge
bubbles expected around the wings of insects, bats and some birds (paper IV). More three
dimensional flow visualization experiments are obviously desirable to resolve this point, and
the information they provide on the rate of rolling up would also be useful.

2.2. Impulse of the vortex sheet

The vortex sheet is a surface of discontinuity, or separation, in the air. Any vorticity created
by the wings must be confined to that thin layer where the air passing over the wing is rejoined
with that passing under it. The air surrounding the sheet contains no vorticity, which can be
created only at the interface between the air and a solid object, thus the surrounding air is in
irrotational motion. The velocity potential @, of the fluid motion must be continuous throughout
the irrotational flow, but a discontinuity of some magnitude A¢, exists across the sheet. The
same flow field can, in fact, be generated by a hypothetical mechanism that is divorced from
the wing action — the application of an impulsive pressure to the surface of separation. By
considering the impulse that would produce an identical flow pattern, a technique sometimes
employed in fluid dynamics (Prandtl & Tietjens 1957 6; Kdrmédn & Burgers 1935), the mean
circulatory force applied to the air by the beating wings can be estimated.

The concept is described in the following way. The sheet of discontinuity is replaced by a
rigid surface in air at rest. This surface then exerts a pressure p on the air for a very brief period
7, and the time integral of the pressure over this period equals the pressure impulse. At the
end of the period the irrotational flow around the surface is the same as that around the vortex
sheet created by the wings, and the rigid surface immediately disappears. The pressure impulse
also generates vorticity over its surface of application (Kdrmdn & Burgers, 193 5) and, if the
irrotational motions are identical, then the vortex sheet produced by this mechanism must be
equivalent to that created by the wings. Because the resulting air motions are equal, the impulse
applied by either mechanism will be the same.

The discontinuity Ag, in the velocity potential across a small area d4 of the sheet can be
produced by the application of a pressure impulse equal to pAg,, where p is the density of air.
The_force impulse dI corresponding to this pressure impulse is pA@, d4, and the direction of the
applied force must be perpendicular to the area d4. It should be noted that this impulse is
independent of any other vorticity in wake: the flow associated with other vorticity must be
irrotational in the region of the area d4 and cannot introduce a discontinuity in the velocity
potential there. The total impulse I required to generate the surface of discontinuity is obtained
by integrating the force impulse over the area of the sheet. This is a vector operation in general,
but because the vortex sheet is approximately planar we can simply write

1=, Agyas (1)

where the net force impuylse is perpendicular to the relative stroke plane.

The circulation I' around any closed curve in a fluid is defined as the line integral of the
fluid velocity along the curve. If the curve is limited to irrotational regions of flow, then the
line integral and the circulation are both zero. Now consider the curve intersecting the vortex
sheet at point p in figure 24. The curve lies in irrotational flow except for the intersection, so
the circulation around the curve must equal the local discontinuity of the velocity potential
A¢, across the sheet. From the figure it is clear that I” must also equal the strength of all the
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122 C.P.ELLINGTON

vortex lines between p and the sheet boundary. These vortex lines are just the shed
vorticity — (017/0¢) d¢ of the wing, so the sum of the vorticity enclosed by the curve must equal
the circulation I" around the wing as it passed the point in the stroke plane corresponding to
p on the sheet. Equation (1) can now be transformed into an integral of the wing circulation
over the area swept by the wings using the definition of 4, and the relation between I" and
the discontinuity in the velocity potential:

COS ﬂ ¢max

cos ﬂ r Yémin

R
I1=2p j I'rdrde, (2)
0
where I is the circulation around the wing element at r when the positional angle of the wing
is ¢ (the regrettable double usage of this symbol arises from conventions in fluid mechanics
and the descriptive geometry for wing motion).

It will prove useful to introduce a non-dimensional wing circulation I, given by the ratio
of I to the maximum circulation 'y, around the wing during the half-stroke. This normalizes
the circulation profile, or distribution, over the sheet with I ranging between 0 and 1. For a
given profile, the net impulse is then proportional to the maximum circulation I'yay. It is also
advantageous to integrate equation (1) over a non-dimensional area so that the impulse is
proportional to the area of the sheet 4,.. This can be done with the non-dimensional parameters
of wing position defined in paper III; the positional angle ¢ of the wing in the stroke plane is
replaced by ¢, which varies between 1 and —1, and the radial position 7 of a wing element
is divided by R to give 7. Equation (2) can then be written as

_ , Cosf Jl Jl 5 ;
I=pdR cosﬂ,rmax A I'fdfdg, (3)
1= pA; Tipax . (4)

Although equations (2) and (3) are more directly related to events in the stroke plane, equation
(4) offers a better physical interpretation of the impulse of the vortex sheet: the impulse is
proportional to the product of air density, area and maximum circulation of the sheet. The
constant of proportionality, [, may be regarded as a non-dimensional impulse and is solely
determined by the normalized distribution of circulation over the sheet:

I= fl Ll I'tdfdg. (5)

This definition also shows that [is equivalent to the mean value of I over the area of the sheet,
I, and this value must lie between 0 and 1.

The impulse of the vortex sheet does not change when it rolls up into two discrete vortex
rings. The area A of the rings can therefore be calculated by equating their impulse to that
of the planar vortex sheet. Because all of the sheet vorticity is concentrated around the
perimeters, the circulation of any curve intersecting the area enclosed by the rings is constant
and equal to I'p,y (figure 3b). Thus the impulse of the rings is simply pA; I'p,y and, using
equation (4), the rolled-up area 4; is equal to AT

2.3. Mean circulatory lift

The force impulse required to generate the vortex sheet must be provided by the wings, and
is equal to the time integral of the circulatory lift over the duration of the half-stroke. The mean
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A VORTEX THEORY OF HOVERING FLIGHT 123

circulatory lift L is therefore given by the impulse divided by that period. The period is not
equivalent to the duration 7 of the impulse, incidentally; the derivation of the impulse theory
from Bernoulli’s general equation for unsteady motion requires that 7 is infinitesimally brief
(Prandtl & Tietjens 19574). If n is used to denote the wingbeat frequency, L is simply equal
to 2nl over a half-stroke and an appropriate expression for I can be chosen from above. The
direction of the mean circulatory lift is, by definition, perpendicular to the relative stroke plane.

For some applications it is more convenient to consider the circulation around a wing element
as a function of time instead of the positional angle of the wing. The order of integration may
be reversed in equation (2), and rd¢ can then be written as r(d¢/d¢) dt = Udt, where U is the
flapping velocity. With this substitution, the mean circulatory lift is equal to

Urdr, (6)

where UT for a wing element is the mean value of the product of its flapping velocity and
circulation. Thus the mean circulatory lift on a particular span-wise element must be

r=por, )
cos B,

and equation (6) is just the sum of this quantity for all of the wing elements. Equation (7) can,
in fact, be interpreted as the mean of the product of I" and a velocity given by U cos g/ cos g,
since cos # and cos 3, are taken as constant during the half-stroke. After some rather tedious
vector analysis, it can be shown that this velocity is actually the relative velocity component
perpendicular to the span of the wing. As stated in paper I, any spanwise component of the
relative velocity is assumed to have no effect on the aerodynamic force produced by a wing
element, so the relative velocity U, that governs the circulatory lift on an element is more
properly equal to this perpendicular component,

U, = U cos f/cos f,, (8)
and equation (7) can now be written as
L'=pU,T. (9)

This useful result, which I have not seen elsewhere, provides a form of the Kutta—Joukowski
theorem applicable to unsteady aerodynamics. The circulatory lift on an element in steady
motion is equal to p U, I' according to the theorem, but this expression cannot be used to
calculate the instantaneous lift in unsteady motion (paper IV). Equation (9), however, shows
that the mean circulatory lift is given by the mean value of the Kutta—Joukowski relation even
for unsteady motion. This result is valid only for the assumptions of this vortex theory of
hovering, but a general proof of equation (9) for arbitrary unsteady motions is easily derived
in the same manner.

2.4. The pulsed actuator disc
The essence of hovering is the production of a vertical force to balance the animal’s weight.
Depending on the relative stroke plane angle g, this task can be accomplished using lift, profile
drag, or a combination of the two. The final calculations in paper VI reveal that g, is close
to zero for animals hovering with a horizontal stroke plane, thus the circulatory lift of each
half-stroke is responsible for weight support: the induced velocity is small with respect to the
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flapping velocity for this group, so £, does not differ much from £ and both angles are quite
small. Paper VI also shows that circulatory lift on the downstroke can provide virtually all of
the weight support for most animals hovering with an inclined stroke plane. When the induced
velocity is added to the flapping velocity of an inclined stroke plane, f, is less than £ on the
downstroke but greater than f# on the upstroke. The induced velocity is a substantial fraction
of the flapping velocity for this group, resulting in a relative stroke plane close to horizontal
on the downstroke but strongly inclined on the upstroke. The upstroke cannot produce a
significant vertical force without a concomitant large horizontal thrust, therefore the downstroke
lift is much more likely to provide the weight support.

The role of circulatory lift for these two groups can be idealized by considering that the mean
lift is exactly vertical and is of sufficient magnitude to balance the weight. Two lift impulses
per wingbeat provide the weight support for animals hovering with a horizontal stroke plane,
but only one impulse is used for an inclined stroke plane: if the frequency of lift impulses is
denoted by f, then f equals 2n and n respectively. The ideal lift impulse, which shall be called
L, is therefore vertical and equal to mg/f in order to balance the weight over the period 1/fin
both groups. The vortex sheet generated by each impulse must be horizontal, and its area 4,
is given by the projection onto the horizontal plane of the area swept by the wings:

Ay = PR%cos f. (10)

For the sheet impulse to provide the required weight support, the maximum circulation of each
sheet must, from equation (4), be given by

Fmax= o/PAoi= mg/pfAOf (11)

The essential wing action in hovering can therefore be represented by a hypothetical
mechanism which periodically applies a pressure impulse mg/fA4, over the horizontal surface
of area A4, in the air.

An appropriate name for this mechanism is a pulsed actuator disc because of its obvious relation
to the conceptual device employed in the momentum theory of propellers. In that theory the
propeller is replaced by a thin disc, a Froude actuator disc, which applies a steady pressure to
the air corresponding to the propeller thrust. The Froude disc may be regarded as a special
case of the pulsed actuator disc because, in the limit, the pulsed disc will produce a steady pressure
as the frequency f of impulses becomes infinite.

The pulsed actuator disc is an extremely useful artifice that links the two parts of the vortex
theory. As a fitting end to the first part, the disc closely approximates the net effect of the
complicated lift forces produced in hovering. These forces must impart momentum to the air
according to Newton’s laws, and the momentum change takes the form of a jet of air blowing
down vertically below the animal. The second part of the theory deals with the characteristics
of this jet, particularly the power required to generate it. A complete analysis of the jet is an
impossible task, however, and simplifications must be employed. The hypothetical jet which
would be produced b}; the operation of a pulsed actuator disc is, in fact, a very good model
for the real jet.

3. THE WAKE

The vortex theory has so far concentrated on the local aerodynamic events around the wings.
This near-sighted approach is useful for the analysis of the mean lift, but it cannot be entirely
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satisfactory because the operation of a wing is affected by its past history. Indeed, an ill-defined
‘induced velocity’ attributable to wake vorticity had to be pulled out of the air to explain some
of the local effects. Paper VI shows that the induced velocity is usually small with respect to
the flapping velocity, though, and that its effect on the mean lift is negligible for most hovering
animals. This does not justify ignoring the induced velocity, however; it is directly responsible
for a large power expenditure in hovering flight.

Returning briefly to figure 14, the total power required to move a wing element is equal
to the flapping velocity U multiplied by the ‘total drag’ force — the component of the net
aerodynamic force F” that is parallel to U. Because the circulatory lift is perpendicular to the
relative velocity Uy, which is given by the vector sum of U and the induced velocity w,, the
lift actually contributes an amount L’sin (f#—f,) to the total drag. This contribution is
determined by the induced velocity and hence is called the induced drag: the work done by the
wing against the induced drag is, in fact, equal to the energy imparted to the vortex wake.
The remainder of the total drag arises from the profile drag of the element. The total power
required to move the wing is also divided into these two components by convention: induced
power P4 and profile power ...

Even though sin (#—f,) may be small because of a ‘negligible’ induced velocity, when
multiplied by the large lift force it can result in a substantial induced power demand. The
induced velocity w, must therefore be calculated with some accuracy, but it can be derived
directly from the induced velocity field of wake vorticity only if the positions and strengths of
all vortices are known. The wake is conceptually analogous to that of a propeller, but the
distribution of vorticity within it is more complex because of the absence of both axial symmetry
and a relatively simple helicoid geometry. These complications may seem formidable when
Bramwell (1976) writes of the comparatively simple helicopter wake: ‘since the only flow
through the rotor in hovering flight is due to the velocity field created by the bound vortices
and the vortex sheets, and since the distribution of the vortex sheets is determined by this
velocity field, the problem of calculating the flow becomes extremely complicated and a purely
analytical solution is out of the question.’

Because of these difficulties, the success of propeller theories rests on a judicious simplification
of the wake structure. A similar course will be attempted here, and it relies heavily on an
alternative description of the wake that avoids the vorticity distribution altogether. The wings
must create a region of low pressure above them and one of high pressure below to support
the animal’s weight in hovering. The net effect of this is to suck air, initially at rest far above
the animal, down towards the wings and then drive it away below. The jet thus formed
corresponds to the momentum imparted to the air by the reaction of the wing forces: unless
Newton’s laws are to be violated, such a jet must be produced as a necessary consequence of
hovering.

It should be apparent that this momentum jet is, in fact, synonymous with the vortex wake of
the wings. Vorticity shed from the wings convects with the surrounding air, so the vortex wake
must be contained within the jet and its motion governed by the jet velocity. The motion of
a vortex wake can be determined separately from the induced velocity field of its own vorticity,
though, and the two approaches will be consistent only if the air motion of the jet is identical
to the induced velocity field of the vortex wake. In particular, the downward velocity of the
jet in the vicinity of the beating wings must equal the induced velocity w, from the wake
vorticity. Furthermore, the rate at which energy is supplied to the jet to increase its momentum
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must be equivalent to the power imparted to the vortex wake, which is simply the induced power
P4 By oscillating between these two alternative descriptions of the wake, and their associated
analytical techniques, we can develop in stages an improved model for the estimation of induced
power and velocity.
3.1. The Rankine—Froude momentum theory

The momentum theories of propellers, initiated by Rankine and further developed by Froude,
determine the air velocities in the wake from the momentum flux required to provide a given
propeller thrust. In the simplest theory, the Rankine-Froude axial momentum theory, the wake
is considered as a steady jet with a uniform axial velocity across any cross-sectional area.
Although this model is very crude, it actually represents the ideal wake for a propeller: the
momentum flux required for a given thrust will be produced for the minimum induced power
when the wake corresponds to these assumptions. Hoff (1919) first pointed out that this model
could also be applied to animal flight studies, and it has been widely used since then to estimate
the induced velocity and power in such studies. For practical and historical reasons, the
Rankine-Froude theory is therefore the most suitable starting point for a more sophisticated

analysis of the wake.

(a) annulus (b) streamtube

SN e e

Ficurke 4. The idealized wake flow of the axial momentum theory for a hovering propeller in () and an animal
in (b). The actuator disc in each case is indicated by the shaded area. The vertical velocities are constant across
the wake in the Rankine-Froude theory, but they may vary between annuli and streamtubes in the differential
momentum theory.

This simple view of the wake is shown in figure 4a for a ‘hovering’ propeller, or helicopter
rotor. The action of the propeller is replaced by a horizontal Froude actuator disc of area
A, = nL?, where L is the length of the propeller blades. The pressure exerted by the disc on
the air is assumed to be constant over its area and steady with time. This causes a downward
acceleration of the air that continues for some distance below the disc because of the high
pressure in the jet. The jet pressure gradually returns to atmospheric far below the disc, and
the air velocity then remains constant. Using Bernoulli’s equation, the theory shows that the
vertical velocity w finally attained in the ‘far’ wake is twice the induced velocity w, at the disc:
w = 2 w,. Furthermore, continuity of flow requires that the volume of air passing through the
far wake per unit time equals that flowing through the disc, Aw = 4, w,, so the far wake area
A must be 314,. Thus the jet contracts below the disc until the air is accelerated up to its final
velocity.

The Rankine-Froude theory may be applied directly to hovering animal flight once a
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suitable actuator ‘disc’ is defined. Other authors have consistently chosen a circular disc with
area 4, = TR? (e.g. Weis-Fogh 1973; Rayner 19794, ¢), although R. A. Norberg (1975) did
so with some reservations. This is probably taking the propeller analogy too far: the wake
dimensions must be influenced by the stroke angle @ and the stroke plane angle £. It seems
much more appropriate to define A, as the area over which the wings actually impart downward
momentum to the air, giving 4, = @R?cos f as for the pulsed actuator disc. The shape of the
Froude ‘disc’ isirrelevant to the theory, so the animal’s disc can be pictured as the two pie-shaped
sections shown in figure 44. This should be a good representation of the wing action and
indicates that two jets are formed below the animal. The total area A4 of both jets in the far
wake is still $4,, though, and the velocity w in each jet is 2w,. Although figure 45 conveniently
shows the cross-sectional shape of the far wake to be the same as the disc, this cannot be
concluded from the theory; indeed, there are good reasons to suspect that the jet under each
wing will change shape while retaining the same area.

The momentum equation for fluids may be applied to the far wake, and it gives the force
F required to generate a steady flow of velocity w over an area 4 as

F = pu?d. (12)

This simply equates the force F to the rate of change of momentum of the jet, which is equal
to the product of mass flow, pwA, and velocity w. Equation (12) may be rewritten in terms
of wy, and A4, using the relations above and, when equated to the weight of the animal, the
unknown induced velocity w, can then be found:

wy = mg/2p Ay = pa/2p. (13)

The useful parameter pg (= mg/A4,) is the pressure exerted by the disc on the air — the disc
loading.

The power required to create the jet is equal to the work per unit time done by the disc
on the air, Fw,. Because this work is responsible for the kinetic energy that appears in the steady
jet far below the animal, the power may also be derived from the kinetic energy flux in the
far wake, } x mass flow x (velocity)?. This power is equal to the induced power of the wings,

sving Ppq = Fuy = Jpw'A. (14)
The specific induced power P, is conventionally used in the literature and is equal to the
induced power per unit weight supported. From equations (13) and (14),

Pla = wy = v/ (pa/2p) = Py, (15)

which is the final form of the theory. The Rankine—Froude estimate of Pif 4 will prove especially
useful in the derivation of more advanced models, and so is denoted by P{g.

The Rankine-Froude analysis of the wake is elegant in its simplicity; only one parameter,
the disc loading p,, is needed to estimate the induced velocity and power of the wings. For
a given weight support this.parameter is entirely governed by the area of the disc, so 4, must
be carefully defined. Consider an animal hovering with a horizontal stroke plane and a typical
stroke angle @ of 2 rads, for example: the induced power estimated from the conventional value
of 4y(=mnR?) would be 209, below that from my definition of 4,(= ®R?cosf). This is a
substantial discrepancy, and the results for an inclined stroke plane with smaller & differ even
more. Apart from this problem about the disc area, the model is well-suited for the analysis
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of hovering animal flight: it is easy to apply and gives the absolute minimum value of the
induced power.
3.2. The simplest vortex theory

A momentum theory considers only the initial and final states of the air acted upon, and
hence does not require any knowledge of the aerodynamic mechanism used by a propeller or
flying animal. Indeed, the operating mechanism is treated as a black box, the Froude disc, which
somehow exerts a pressure over a limited area in the air. A vortex theory of hovering, though,
is derived from an understanding of the mechanism itself. The pressure applied to the air by
the blades (or wings) can be attributed to the circulation around them, which also causes free
vortices to be shed into the wake. Because the wake motion is determined by the induced velocity
field of these shed vortices, the pressure exerted by the blades can be directly related to the
induced velocity and power. It is very difficult in general to calculate the induced velocities
of a vortex wake, however, and modern methods are often forced to rely heavily on numerical
techniques that are not altogether satisfactory. Fortunately, some physical approximations can
be invoked for most hovering propellers and animals, leading to vortex theories as simple as
the momentum theories.

(b) c
“ }‘—260—"‘
c , C Or,
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c 3
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lOl cv v cy | (ot
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Ficure 5. (a) The vortex wake of a pulsed circular Froude disc may be represented by an axial chain of circular
vortex rings. (b) If the axial separation a is negligible, as assumed in the simple vortex theory, then the
discontinuous vortex boundary can be approximated by a continuous vortex sheet. (¢) For larger separations,
the wake velocities show periodic variations that increase the specific induced power.

As discussed in §2.4, the vorticity shed from the wings can be modelled by the horizontal
vortex sheets produced by a pulsed actuator disc. Vorticity will be continuously distributed
over each sheet in general, but the complexity of the distribution vanishes for one special case:
if the circulation is constant along the wings while each sheet is generated, then the shed vorticity
consists of a single vortex line around the perimeter of the sheet. Thus the circulation I' is
constant over the pulsed disc and will be denoted by I for this special case; I, must be equal
to the maximum circujation I ,,, which is p4/pf according to equation (11) and the definitions
of pq and I. For a circular disc, as shown in figure 54, each pulse therefore creates a single circular
vortex ring of area 4, and circulation I. The rings move downwards under their induced
velocity field, forming an axial chain of vortex rings in the wake. The rings will be close together
when the frequency f of impulses is very high, and as f approaches infinity they will merge
into a continuous cylindrical vortex sheet moving downwards from the disc perimeter. To
construct a simple vortex theory of hovering, we need only assume that the frequency is high
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enough for the discrete rings to be approximated by such a continuous sheet. This approximation
is illustrated in figure 56, which shows a vertical section through the wake: the vorticity
concentrated in each ring on the left-hand boundary is considered to be distributed uniformly
over the small axial distance between the rings, and results in the vortex sheet of the right-hand
boundary. Circulation must be conserved when redistributing the vorticity in this manner, so
the circulation around a length of the sheet equal to the ring separation must also be /.
Denoting the axial separation of the rings by a in the far wake, the circulation per unit length
of the vortex sheet is I'y/a far below the disc.

The velocity of a fluid changes abruptly across a vortex sheet, so the smooth cylindrical sheet
forms a boundary between the undisturbed air and a steady axial flow in the wake. The velocity
difference across a sheet is equal to its circulation per unit length, therefore the velocity w of
the far wake with respect to the still air is I'y/a. Because of the periodicity of the ring structure
the axial separation a must equal v/f, where v is the downward velocity of the rings. Using
this relation and the definition of Iy, the far wake velocity w can then be written as

w = pa/pv- (16)

In this simple vortex theory, the ring velocity v can be approximated by the downward velocity
of the cylindrical vortex sheet. The inner surface of this sheet moves with the wake velocity
w while the outer surface is at rest with the still air, so the sheet travels downwards at an average
velocity of Jw. Substituting this value for v, the wake velocity is finally given by

w? = 2fTy = 2pa/p. (17)

It should be apparent that we have just derived the Rankine-Froude axial momentum jet
from a different approach, that of the vorticity shed from the pulsed disc. This disc is a pulsed
Froude disc, in fact, applying a uniform pressure impulse pI over its area. Thus the simplest
vortex theory of hovering, with constant circulation across the disc and a high frequency of
impulses, provides the same wake model as the axial momentum theory. The analysis of this
wake by either approach must yield the same answers, of course, and equation (17) agrees with
the wake velocity already presented in the Rankine-Froude theory. Although illustrated here
for a circular pulsed Froude disc, the simple vortex approach is equally applicable to a hovering
animal. Indeed, this approach provides very strong support for my definition of the disc area
A, as DR? cos . Because vorticity can be created only at the interface between the wings and
the air, the vortex boundary of the momentum jet must be restricted to the area actually swept by the beating
wings.

3.3. A differential momentum—vortex theory

The operation of the propeller blades, or animal wings, has been grossly simplified in the
two theories just presented. It has been assumed that the aerodynamic mechanism applies a
continuous, uniform pressure to the air, and these restrictions must be removed to construct more
accurate models of the wake. This section takes one step towards a more general theory by
considering the wake produced by a modified Froude disc that exerts a steady, but non-uniform
pressure over its area. The effects of periodic pressure pulses will be reserved for the following

section.

9 Vol. 305. B
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3.3.1. The momentum ingredient

The steady wake produced by a modified Froude disc is analysed in propeller theory using a
differential form of the momentum equations. Because of axial symmetry, the vertical force is
a function only of radial position for a hovering propeller. Thus the modified Froude disc can
be regarded as a set of concentric annuli, or rings, each of which exerts a characteristic pressure.
The air passing through a particular annulus forms a hollow cylinder below the disc, as shown
in figure 44, and the wake corresponds to the nested cylinders from all of the annuli. In the
differential momentum theory of propellers, it is assumed that the momentum equations used
in the Rankine-Froude theory can be applied independently to the steady cylindrical flow of
each annulus. If w is the velocity of this flow over the cross-sectional area d4 of the hollow
cylinder in the far wake, then the force d¥ and induced power dF,,4 required from the disc

annulus are given by
dF = pw?d4, (18)

dPnq = gpw’d4. (19)

The area d4, and induced velocity w, of the disc annulus are related to the far wake parameters
in the same way as the Rankine-Froude theory: w = 2uw,, and d4 = id4,.

The axial symmetry of the propeller disc is absent for a hovering animal, so it is more
appropriate in that case to consider a streamtube passing through the disc into the far wake (figure
4b). The equations of force dF and induced power dF,, for a streamtube are the same as for
a propeller annulus, except that d4 and d4, now refer to the cross-sectional areas of the
streamtube.

Although this differential form of the axial momentum theory is widely used for propellers,
its validity has not been established. The proper momentum equations for fluids are, in fact,
derived as integral equations: the total force of a steady jet is given by the integral of the
momentum flux across its area, and the total power is equal to the integral of the kinetic energy
flux. The assumption that these equations are valid in differential form implies that the
cylindrical flow from each annulus is not influenced by adjacent cylinders. Many authors have
discussed this problem without drawing firm conclusions, but the general consensus is that the
assumption should be a reasonable approximation to the real events.

3.3.2. The vortex ingredient

The differential momentum theory succeeds in relating the induced power and velocity to
the local pressure exerted by the disc, but it can go no further. Precisely because the momentum
approach ignores the details of the aerodynamic mechanism, it cannot be used to determine
the actual pressure distribution. In propeller theory this information is usually provided by a
force coeflicient blade-element analysis, but this method is not very suitable for our unsteady
aerodynamic mechanisms. It will prove more useful to employ a vortex approach instead, as
done in the more sophisticated propeller theories. Those theories generally use a lifting-line
vortex theory to specify the pressure distribution, but the generalized pulsed actuator disc model
is also quite suitable.

The vertical force dF exerted on a small area d4, of the modified Froude disc must equal
the mean force locally applied by the pulsed actuator disc. The vertical force impulse d/; over
this area is p I'd4,, so the mean force is just pf I"d4,.
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Writing dF = 2pw2dA4, = pfT'dA,, (20)

the induced velocity w, of the streamtube, or annulus, can then be expressed in terms of the
local disc circulation. I is equal to I'T,, though, and equation (11) shows that

rmax=pd/pff~ (21)
The local induced velocity can therefore be written as
ryp "
wo=|2%] = wo v (D), (22)

where w, gy is the induced velocity calculated from the Rankine-Froude theory. Remembering
that ['is equivalent to the mean value of I" over the disc area, w, is also given as

wy = wy wp vV (F/T). (23)

Thus the local induced velocity is simply equal to the Rankine-Froude value multiplied by
the square root of the local circulation divided by the mean circulation.

The total induced power expended by the wings is obtained by integrating dP,,q4 over the
disc area. Using equation (19) and the relations between the far wake and disc parameters,
the total induced power P, 4 is given by

Poa =20 || ugad, (24)

The induced velocity from equation (22) can be substituted into this integral and, with the
help of the non-dimensional parameters of wing position, the specific induced power for
hovering animals can be written as

1 p
Ptqa= Pl"{FFf ‘[ rirdrdg, (25)
tJ1Jo

where P{y is the Rankine-Froude estimate. The integral in equation (25) is equal to the mean
value of I'# over the disc area, so the specific induced power can also be expressed by

Phq = Phe [TV 1], (26)

Like the induced velocity, P4 is equal to the Rankine-Froude estimate multiplied by a factor
that depends only on the normalized distribution of circulation over the disc. The bracketed
ratio in equation (26) must always be greater than or equal to 1, so the specific induced power
for a differential disc can never be less than the Rankine-Froude value. The ratio will equal
1 only if I' is constant and therefore equal to 1 over the disc: for that special case the applied
pressure is the same for all streamtubes, so the differential disc is equivalent to the Froude disc.
Even when I is not constant, though, the ratio is unlikely to be much greater than 1. I have
previously calculated P4 for some reasonable circulation profiles, and they were only about
89 above the Rankine-Fréude estimate (Ellington 1978). Values for the insects in paper 111
will be given later in paper VI, but they are much the same.

Whether this theory should be called a ‘differential momentum theory’ or a ‘vortex theory’
is largely a matter of personal preference. Both names are used in propeller theory, and I have
included both in the title of this section for reasons of diplomacy. By combining the two
approaches, the induced velocity and power have been related to the circulation responsible
for the vertical aerodynamic force. This is the goal of a vortex theory, of course, so that name

0-2
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may be somewhat more appropriate. Furthermore, the momentum approach is not a necessary
part of the theory, because it could be replaced in principle by a vortex analysis similar to
the simple vortex theory. We would then consider a vertical vortex sheet separating adjacent
annuli from a propeller disc, giving a vortex wake model of co-axial cylindrical vortex sheets.
In the same manner, the adjacent streamtubes from an animal disc would be separated by a
vortex sheet, indicating a honeycomb-like vortex structure for the wake. The axial velocity
difference between adjacent annuli, or streamtubes, is given by the circulation per unit length
of the separating vortex sheet, so the absolute axial velocity could be obtained by integrating
in from the wake boundary. The differential momentum theory must give the same results,
however, and it is certainly much more convenient to use.

3.4. A theory of wake periodicity

In this section, the wake model is further improved by investigating the effects of a periodic
application of pressure to the air. An introduction to the subject has already been provided
by the simple vortex theory, which considered the wake produced by a pulsed circular Froude
disc. The uniform pressure distribution over this disc during a pulse results in a single vortex
ring around its perimeter, and the wake consists of an axial chain of such rings. A vertical section
of the wake is drawn in figure 5¢, showing that the wake velocities are not steady when the
vortex boundary is discontinuous: the jet tends to flow outwards and slow down between
adjacent vortex rings, and it contracts and speeds up inside each ring. This produces a pulsating,
quasi-steady, periodic jet with horizontal velocity components that must increase in magnitude
with large axial separations of the rings.

These horizontal velocity components require energy, of course, but they do not contribute
to the axial momentum flux supporting the animal’s weight. Thus they represent an energy
loss, and the induced power for such a periodic wake must be greater than a steady jet
generating the same force. The increased power requirement is related to the #ip losses of
propeller theory, a problem addressed by Prandtl (1919), Goldstein (1929) and many others:
see Bramwell (1976) for a review. For various reasons their analyses are not directly applicable
to hovering animal flight, so I have developed a new theory that once again uses the powerful
combination of momentum and vortex approaches.

The theory could, in principle, be developed along two lines. With the Rankine-Froude theory
corrected for a non-uniform pressure distribution over the disc, we could now analyse the
effects of periodicity on the differential momentum-vortex model. Alternatively, the influence
of periodicity could be studied in isolation by considering the wake of a pulsed Froude disc.
I have chosen the second method because its separate treatment is more attractive conceptually,
allowing the two major deficiencies of the Rankine—Froude theory to be corrected independently
by appropriate modifications to the basic Froude disc. This sense of continuity is conspicuously
absent in propeller theory, which discards the Rankine-Froude model when investigating
tip-losses.

3.4.1. The quasi-steady momentum jet

We begin by applying the momentum equations to the periodic wake of a pulsed Froude
disc. As in the Rankine-Froude theory, it is assumed that the mean pressure in the far wake
is the same as the surrounding air, and that a wake boundary does exist. The second assumption
may seem questionable since the vortex boundary is discontinuous, but the classical analysis
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of a two dimensional Kdrmdn vortex street shows that a time-averaged mean boundary
certainly exists for quasi-steady periodic wakes. In this theory it is only assumed that some
instantaneous boundary could be defined which yields the mean boundary on average, but
details of the boundary will not be required. The far wake parameters are all periodic functions
of time: the cross-sectional area 4, the vertical velocity component w, and the magnitude of
the net velocity vector ¢, which includes both vertical and horizontal velocity components. The
momentum equations can be used to determine the mean vertical force and mean induced
power of the periodic, quasi-steady jet if both sides of the equations are assigned their mean
values (see Prandtl & Tietjens 1957a; Mises 1959). Thus the mean force and power are given
by the mean values of the momentum and energy fluxes:

F = pAuw?, (27)

Pinq = 3pAwg?, (28)

where bars indicate time averages, and p is taken as constant because the air is effectively

incompressible. In the limit as the axial ring separation vanishes, the net velocity g approaches

the vertical component w, all wake parameters become steady with time, and these equations
then reduce to those of the Rankine—Froude theory.

Continuity of flow requires Aw to be constant, if it is assumed that a wake boundary exists,

so this product can be removed from the averaged quantities. If we restrict the analysis to wakes

with a slight periodicity, the horizontal component will be small and ¢ may be approximated
by w. The mean specific induced power from equations (27) and (28) is then

P¥y = Ppy/F = w?/2w. (29)

1

Siekmann (1963) applied the unsteady Bernoulli equation to the periodic momentum jet
generated by a pulsed Froude disc, and he derived another expression for the mean force as

F = pd,u?, (30)

where 4, is the area of the disc. The periodic jet must produce the same mean force as the
steady Rankine—Froude jet for weight support, so equation (30) must also equal }pA4, wk y, where
wgry is the steady axial velocity in the far wake of the Rankine-Froude model. This shows that
w? is equal to why and, remembering that w, g = Jwgy, equation (29) can be reduced to

Piha = wo, rr Wrp/W = PRpwgrp/w = kPRp. (31)
Thus the specific induced power of a quasi-steady jet with small periodicity can be written as
a factor k times the steady Rankine-Froude value, where £ is the ratio in the far wake of the
Rankine-Froude velocity to the mean velocity of the periodic wake. Py is the theoretical
minimum for the specific induced power, so £ must be greater than unity for a periodic wake,
and @ is therefore less than wgy.

3.4.2. The vortex wake .

Although the mean wake velocity @ cannot be determined from the momentum approach,
it is readily calculated from the type of vortex analysis used for a Karman vortex street. As
in the simple vortex theory, the circulation Iy of each ring from the pulsed Froude disc is equal
to I'pax (= pa/pf), the downward velocity of the rings in the far wake is v, and the axial ring
separation there is a (= v/f). Each vortex ring moves steadily through the distance a along
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the mean wake boundary during the cycle period 1/f, which is equivalent in a time-averaged
view to a uniform distribution of the ring vorticity along the length a. The circulation per unit
length of the mean boundary is therefore I'y/a, and this must equal the mean velocity difference
across the boundary. Thus the mean wake velocity can be written as

@ = pa/pv, (32)

which is the time-averaged version of equation (16) from the simple vortex theory.

The specific induced power is now a function of only one unknown, the axial ring velocity
v, which was the final important parameter of the simple vortex theory as well. However, the
mean velocity of a continuous vortex sheet cannot be used again to estimate v beause this would
remove the effects of periodicity from the model. The ring velocity must be calculated directly
instead, and it is much easier to do this if we assume that the rings are circular: the errors
possibly introduced by this assumption will be discussed later. Thus the wake shall be idealized
as an axial chain of circular vortex rings which are created by a pulsed circular Froude disc.
The initial ring radius b, at the disc is 4/(4,/7), but the rings contract as they move down
the wake. Far below the disc, the wake is characterized by the ring radius b, the axial separation
a, and the axial ring velocity v (figure 5¢). The circulation of each ring cannot change with
time, so it is always equal to the initial value I',.

Levy & Forsdyke (1927) have investigated the velocity at which a circular vortex ring moves
along the axis of an infinite chain of identical rings, and their results may be applied to the
far wake. The velocity v of each ring has two components: (i) the induced velocity from other
rings in the chain, and (ii) the self-induced velocity of the vortex ring under consideration. It
is convenient to reduce the equations of Levy & Forsdyke to the following expression,

v = —IbE[K(a/b) +01. (33)

K is a function describing the influence of the rest of the chain on the velocity, and it is only
dependent on the spacing ratio a/b of the rings. K is readily calculated numerically from the
equations of Levy & Forsdyke, and is shown by the curve in figure 6.

The vorticity responsible for the circulation of a vortex ring is confined to a core region, about
which the irrotational flow recirculates. The constant C, which represents the contribution of
the self-induced velocity to the total axial ring velocity v, is determined only by the distribution
of vorticity in the core, but we have no information concerning that distribution. The action
of viscosity within the core of a vortex ring often tends to produce a circular core that rotates
like a solid cylinder, however, and this form can be used for an initial estimate of C. The radius
€ of the circular cross-section of such a core is usually expressed non-dimensionally by the
core-to-ring radius €/b. C can then be derived from the equations of Levy & Forsdyke as

k!

where the constant % reflects the choice of a circular core with constant rotation. Reasonable
values of €¢/b may be expected in the range of 0.05 to 0.25 for this theory; larger cores may
begin to overlap with those of adjacent rings under our restriction of small periodicity. The
volume of the core must remain constant as the rings contract alont the wake, so if ¢, and
€ denote the initial value at the disc and the value in the far wake, respectively, they are
related by be? = by€l.


http://rstb.royalsocietypublishing.org/

Downloaded from rstb.royalsocietypublishing.org

A VORTEX THEORY OF HOVERING FLIGHT 135

equation (35)
/

(=]
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Ficure 6. Values of K, representing the axial velocity of an individual vortex ring owing to an infinite chain of
rings, plotted against the spacing ratio a/b. The linear relation of equation (35) is shown by the dashed line.

The wake boundary must converge on the Rankine-Froude geometry when the axial

THE ROYAL
SOCIETY

separation vanishes, so the wake area 4 must approach 44, in that limit. Because the theory
has already been restricted to wakes with small periodicity, 4 can be approximated by that
value and b is then equal to 4/(4,/2n). This result and the definition of I can now be
substituted into equation (33). The axial ring velocity must satisfy the requirement of vorticity
flux in the wake as well as the Levy—Forsdyke relation, so the right-hand side of equation (33)
can be equated to af to produce

la
2o
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K(a/b) = c, (35)

where $2 = 2mpy/pA, [ (36)

Thus considerations of vorticity flux demand a linear relation between K and a/b, as shown
in figure 6, that depends only on the spacing parameter s and the assumed value of C. The
intersection of this line with the curve from Levy & Forsdyke yields the only value of a/b
consistent with both the axial velocity of the chain and the vorticity flux required to support
a given weight. Thus s defines a unique value of the spacing ratio a/b for a given self-induced
velocity, and in doing so it determines the velocity v of the rings. From previous definitions,
s is basically proportional to the Rankine-Froude induced velocity w, gy divided by the mean
wing tip velocity U, (paper I1I), but it also accounts for the influence of the inclination of the
stroke plane on the wake geometry and the relation between impulse and wingbeat frequencies.

The spacing ratio a/b is plotted against the spacing parameter s in figure 74 for C equal to
0.384, 0.297 and 0.256. (These values were calculated from equation (34) for /b equal to 0.05,
0.15 and 0.25 respectively, thus covering the range which might be expected.) The three curves
are quite similar for small s; this indicates that the velocity of a particular ring is primarily
governed by the induced velocity from the other rings when they are closely stacked. The
curvesappear to convergeon theorigin, which is the expected Rankine-Froudelimit for vanishing
axial separation as the freq;lency becomes infinite. For larger values of s and a/b, however,
the curves increasingly diverge. This corresponds to the self-induced velocity of each vortex
ring dominating its axial velocity when the rings are well-separated, and the choice of C then
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has a strong influence. The maximum value of the spacing parameter s found for hovering
animals is 4 (Ellington 1980).
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Ficure 7. (a) The spacing ratio a/b plotted against the spacing parameter s for three values of C.
(b) A similar graph of the induced power factor £.

3.4.3. Induced power

By substituting equation (35) and the definitions of I'y and 4 into equation (33), an expression
for v is obtained that can be used to determine the mean wake velocity of equation (32). By
combining this with the definition of wgp, we can finally derive an equation for the induced
power factor £: V2

a

k= 7 (37)
The results of figure 7a are then used to express a/b in terms of the spacing parameter s and
the three assumed values of C, giving the factor £ as a function of s in figure 75 for those values.
All three curves converge on a value of £ near unity as s approaches zero, the limit of the
Rankine-Froude steady jet. Extrapolation yields £(0) equal to 1.01, 0.99, and 0.98 for C equal
to 0.384; 0.297 and 0.256 respectively. The difference between these values and unity is within
the error of the approximations but shows a systematic variation with C. The curves increasingly
diverge as s increases, but this is again because of the dominance of the self-induced ring velocity.

We now turn to the selection of an appropriate estimate for the constant C in the vortex
ring model. The specific induced power for the periodic wake must always be greater than the
Rankine-Froude value for a steady jet, and it should converge on that value in the limit of
vanishing periodicity. The results for the two smaller estimates of C (0.256 and 0.297) yield &
less than unity as s approaches zero, which clearly violates these momentum considerations.
The value of 0.384 is therefore selected as the most suitable for use in the ring model: it provides
close agreement with the Rankine-Froude theory and does not contradict the theoretical
minimum specific induced power. This value of C corresponds to a circular cored vortex ring
withe/bequal to 0.05, which is perhaps smaller than might be expected. Thereislittle justification
in assuming that the core is actually circular, however; details of the shape and vorticity
distribution of the core are lacking, and the simple circular core was chosen only as a convenient
means of estimating C. Indeed, physical intuition suggests that at small s the core cross-section
should be somewhat lens-shaped with its major axis parallel to the wake axis.
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The results for £(s) are very nearly quadratic, and may be described for C equal to 0.384
b
y k(s) = 0.07952+1, (38)
where £(0) is set equal to unity for agreement with the Rankine-Froude limit. If the intercept
of 1.01 from figure 7b is used instead, then equation (38) fits the curve to better than 19, over
most of the range of s. Equations (37) and (38) may be combined to give

% = 0.05653+0.71s, (39)

thus expressing the spacing ratio a/b solely in terms of the spacing parameter s as well.

3.4.4. Induced velocity

The induced velocity can also be estimated for the pulsed Froude disc using the small
periodicity analysis. The mean induced power of the periodic wake must equal the mean rate
at which work is done by the disc, Fw,. The impulsive force acts only for a brief time 7 during
the period 1/, though, and it is otherwise zero. By considering a time 7 so short that the force
and induced velocity are effectively constant during the impulse, the mean power can then

be written as
Pra = Kw, i 7/, (40)

where the subscript i denotes values for the impulse. The impulsive force must equal F/1f,
however, so the mean specific induced power is simply w, ;. Comparing this to the periodic
approximation of equation (31) shows that

Wo,; = kwo, RF- (41)

Thus the increased P¥ 4 of the periodic jet indicates that the induced velocity during application
of the impulsive pressure is greater than the Rankine-Froude value by the same factor £. This
enhancement of the induced velocity is to be expected from physical reasoning as well: the
impulsive pressure creates a vortex ring as it accelerates the air downwards, and the velocities
of a periodic wake are greatest inside the bounding vortex rings.

3.5. Total induced power and velocity

The two modifications to the Rankine-Froude axial momentum theory must now be
combined to arrive at the total specific induced power requirement of hovering. The first
modification, the differential Froude disc, provides a spatial correction factor for a non-uniform
disc pressure and circulation. This correction depends on the circulation profile, butitis unlikely
to be greater than about 109, of Py for reasonable profiles (Ellington 1978). The second
modification, derived from the quasi-steady jet produced by a pulsed Froude disc, gives a
temporal correction factor for the periodic application of the disc pressure. This correction is a
function of the spacing pérameter s and is also small in general, less than about 10 9, for values
of s corresponding to small wake periodicities (Ellington 1980). Because these two corrections
are quite small, they may be treated as effectively independent perturbations of the Rankine-
Froude model: one introduces spatial variations in wake velocities, the other considers temporal
variations, so any interactions will be of second order and probably negligible. Thus we can
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add the correction factors linearly and express the fofal mean specific induced power
requirement as —_—
q Pha=Pip(1+0+7), (42)

where the spatial correction factor o and the temporal correction factor T are defined by

1 ) A A

U=71§f j Firdrdg—1 = 1Y/ fi—1, (43)
—-1Y0
T=k—1=0.0795, (44)

according to equations (25), (26), (31) and (38).

The total induced velocity can also be estimated from linear addition of the spatial and
temporal corrections when the assumptions of the theory are satisfied. Using equations (15),
(22) and (41), the local induced velocity w, during the impulse can be written as

wy = Py [1+v/ (/)] (45)

The induced velocity is a periodic function of time, and equation (45) is valid only during the
application of the impulse; thus it provides an estimate of the induced velocity experienced
locally by the wings as they actually generate lift.

The local orientation of the vortex sheet arising from circulatory lift (§2.1.) is given by vector
addition of the local induced velocity and the flapping velocity. This result should be averaged
over the entire area swept by the wings to calculate the relative stroke plane angle ., perhaps
weighting the values by the local impulse. These complications are probably unnecessary for
our crude planar representation of the helicoidal sheet, however, and a much simpler method
should suffice: vector addition of a mean induced velocity to a mean flapping velocity. Spatial
variations in the local induced velocity from equation (45) will have no net effect when averaged
over the swept area, so the mean induced velocity while the sheet is created can be taken as
P¥p (1+7). The mean wing tip velocity U, = 2@nR was chosen to represent the mean flapping
velocity for the definition of the advance ratio J in paper III, and it seems a good choice here
for the same reasons. The relative stroke plane angle g, will be different on the half-strokes,
and it is given by vector addition as
PYe(1+7)

tanf, = tan f £ 2®nR cos f’

(46)
where the negative sign is used for the downstroke and the positive for the upstroke.

3.6. Rayner’s theory

Rayner (19794) has also developed a vortex theory of hovering animal flight, by using a
numerical analysis to study the evolution of the wake from rest. He begins with the assumption
that the vortex sheets produced by the wings roll up immediately into horizontal, circular vortex
rings with small circular cores: the ring circulation is equal to the maximum circulation of the
sheet, the ring area is found by equating the ring and sheet impulses, but the core radius is
an unknown. Starting from rest, Rayner then creates these vortex rings at an appropriate
frequency in his numerical model, and calculates their subsequent motion from the total
induced velocity field. This frequency is governed by his ‘feathering parameter’, which is similar
to my spacing parameter but does not include the effects of the stroke angle @ and the stroke
plane angle £.
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There are clearly strong similarities between Rayner’s theory and my treatment of wake
periodicity, but this is hardly surprising since small-cored circular vortex rings offer the most
obvious tractable representation of the hovering wake. In fact, there are only two basic
differences between our wake models. Mine is designed to study the effects of wake periodicity
in isolation, so a uniform circulation profile and initial ring area 4, is assumed, whereas Rayner
considers a non-uniform profile with a rolled-up ring area corresponding to A, I. The second
difference is that I invoke two approximations for the far wake structure to keep the
mathematics simple, if not trivial. I assume that the ring area in the far wake is approximately
half the initial area, based on the Rankine-Froude limit of vanishing periodicity, and that the
vortex rings are equally spaced along the far wake axis. This reduces the degrees of freedom
of the wake model and allows the axial ring separation and hence the spacing ratio a/b to be
determined directly from the considerations of vorticity flux and axial ring velocity. Conversely,
Rayner avoids any approximations about the far wake structure by developing it from rest
in a very lengthy numerical analysis.

3.6.1. Structure of the wake

Rayner’s results show a fascinating behaviour of the vortex rings as they move downwards
in the wake. For large values of the spacing parameter, where ring interaction is negligible,
there is a nearly uniform separation of the rings along the wake axis. At low values, however,
there is a limited instability of the wake structure: instead of maintaining a uniform axial
separation, the rings tend to clump together into large, relatively stable, periodic groups. This
periodic break-up of the wake occurs well below the region of ring creation, so it will have a
very small influence on the induced velocities there. If the wake is modelled with a uniform
axial ring separation it should prove quite adequate for theoretical studies.

It would be misleading to attach too much significance to the interesting wake patterns found
by Rayner. These patterns must reflect to some extent the assumptions of perfectly horizontal,
circular vortex rings with small circular cores, if indeed they are not an artefact of the
assumptions. Rayner discovered that the far wake structure is even dependent on the
mathematical function chosen to represent the growth of vorticity in the new rings. If the far
wake is sensitive to the growth function of vorticity created uniformly around the perimeter
of ideal vortex rings, then we can hardly predict the pattern of wake instabilities for vortex
sheets emanating from moving wings and rolling up at an unknown rate.

Rayner’s results also show that the wake contracts very rapidly below its origin; this agrees
with studies on hovering helicopter rotors (Bramwell 1976). Contraction is effectively complete
before the vortex rings move a distance down the wake equal to their initial radius. Rayner
finds that the contracted region is very stable with a nearly uniform axial ring spacing, even
though the wake structure begins to break up below this region for low values of the spacing
parameter. The contraction coefficient, defined as the contracted ring area divided by the initial
area, tends to increase with the spacing parameter. This is as expected, because larger axial
spacings must decrease the tontracting influence of the wake rings on newly created rings. For
smaller axial spacings the contraction coefficient appears to approach the Rankine-Froude
value of 3, but this convergence is very abrupt at the limit of vanishing periodicity: for values
of the spacing parameter applicable to animals, the contraction coefficient is probably greater
than 1. Rayner notes that the absolute values of the contraction coefficient are sensitive to his
vorticity growth function, unfortunately, so his analysis cannot be used for a reliable
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determination of them. However, he shows that the induced power estimate for a given spacing
parameter is not influenced by the contraction coefficient, so the low value of 1 assumed by
my theory is unlikely to introduce serious errors.

3.6.2. A comparison of the theories

The induced power estimates from the two theories will now be examined under a set of
conditions that permits an almost exact comparison. Consider a horizontal stroke plane with
stroke angle @ equal to m, and a uniform circulation profile around the wings: this makes
Rayner’s feathering parameter f equivalent to s?/4 %, and his parameter R’ equal to unity.
Because Rayner’s wake model is numerically evolved from the initial ring specifications, the
initial core-to-ring radius €,/b, must be matched in the theories. My value of 0.15 for the
core-to-ring radius in the far wake corresponds to €,/b, equal to 0.09, using conservation of
core volume as discussed earlier, and this is very close to Rayner’s initial value of 0.1. His
induced power factor o is equivalent to my specific induced power factor £ under these test
conditions, and his results (figure 13 in Rayner 1979a) give

= 0.0495>4+0.97, (47)
while my figure 74 yields
k = 0.047 52+ 0.99. (48)

Both equations are determined from the results to within graphical accuracy.

The close agreement between the two theories is very remarkable, especially in view of the
quite different methods used to estimate the induced power. Rayner derives it from the energy
required to add a new ring to the chain of vortex rings, whereas I use the small periodicity
approximations in the equations of a quasi-steady momentum jet. These approximations should
cause my theory to become increasingly inaccurate with larger s, although it is possible, if
unlikely, that the errors from different assumptions cancel out. I previously doubted if my
analysis would be of much use for values of s even as large as 4, which is the upper limit for
hovering animals (Ellington 1980); equations (47) and (48) still agree to within 39, for s as
large as 12, however, which was the highest value Rayner tested. This close agreement at very
large values of s is probably fortuitous.

Having established that the two theories are in complete accord under identical test
conditions, we proceed to a more general examination of them. Rayner discusses his results
for the induced power in relation to two groups: ‘normal’ hovering, where the stroke plane
is horizontal, and ‘avian’ hovering, where it is inclined. We shall consider the ‘normal’
hovering group first, which is characterized by low values of the spacing parameter and hence
small wake periodicities. Rayner finds that the influence of the initial rolled-up ring area is much
greater than the effects of wake periodicity for this group, and concludes that a steady
momentum jet analysis can be used to determine the induced power. He claims, without proof,
that an accurate estimate can be derived from the Rankine-Froude theory simply by changing
the area of the Froude disc from nR? to the rolled-up ring area (= 4, ). Thus the usual theory
is presumably corrected for the area actually swept by the wings, and for the circulation profile
over the disc.

Both of these refinements implicit in the work of Rayner (1979 4) had been treated previously
(Ellington 1978), though Rayner did not draw comparisons. In fact, his correction for the
circulation profile does not agree with the differential momentum—vortex theory, which was first
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presented in that earlier paper and is derived from a widely accepted propeller theory. When
my terminology is used, Rayner’s corrected induced power can be expressed by

% PikLF
Pia = vE (49)
whereas equation (26) of my theory gives .
Pia = VIT (50)

The extra term in equation (50) reflects the fact that force and power are proportional to
different exponents of the velocity in a differential momentum jet. Thus the specific induced
power, given by the integral of power divided by the integral of force, must be governed by
two functions of the circulation profile. Rayner’s ring model assumes that the impulse and energy
of a vortex sheet do not change with rolling up, so his specific induced power must converge
on that of the differential momentum jet in the limit of negligible periodicity. Two parameters
in his model are functions of the circulation profile: the intial ring area, which is determined
by the impulse of the profile, and the core-to-ring radius, which obeys an unkrown function.
Rayner’s correction only considers the impulse of the profile, however, and must therefore be
incomplete. If used for the circulation profiles in paper VI, his ‘correction’ can overestimate
the specific induced power by up to 30%,.

Rayner also applies an impulse modification to his results for ‘avian’ hovering, where the
wake periodicity shows a more pronounced influence on the induced power. Again, I think this
procedure is an incorrect interpretation of his numerical results. The dependence of the core
radius on the circulation profile cannot be brushed aside, and there is no valid procedure for
determining it from a vortex ring model. Indeed, I found it necessary to use the results from
an entirely different theory, the momentum theory, to estimate the appropriate value of the
core radius for a single circulation profile, that produced by a pulsed Froude disc. Rayner
did not use the momentum theory to guide the selection of a value for ¢/, however, and his
three values all yield a specific induced power for the pulsed Froude disc with small periodicity
which is /less than the Rankine-Froude minimum. He suggests that the discrepancy is due to
numerical inaccuracies, but this seems improbable since I obtained similar results for large
values of €/b using a different method of analysis; as discussed earlier, I think that the
assumption of circular cores with uniform vorticity is debatable and liable to underestimate
the self-induced velocity of the rings. The need to use a momentum theory in addition to the
vortex ring theory may seem ironical, since Rayner (19794, ¢) presents many objections to the
former. His objections are sometimes valid in principle for the simple Rankine-Froude theory,
but they are quite weak when confronted by the more powerful differential and time-averaged
momentum theories.

4. CONCLUSION

This vortex theory of hovering animal flight complements the discussion of unsteady
circulatory lift mechanisms in paper IV. We can only speculate at present how the wing
circulation varies with radial position and time, but future experimental and theoretical studies
must address this problem. Once the circulation profile during a wingbeat is known, then the
mean lift and induced power can be calculated from the vortex theory. However, the only course
of investigation praticable now is to evaluate these quantities for postulated profiles, as will be
done in paper VI.
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Although very powerful, a vortex theory is not a panacea for the aerodynamic analysis of
animal flight despite suggestions to that effect: ¢ This novel method of analysis dispenses with
the use of lift and induced drag coefficients, both associated with wing circulation and wake
vorticity, which have been the main sources of uncertainty in previous calculations’ (Rayner
1979¢). The lift and induced drag coefficients are simply non-dimensional parameters derived
from the respective aerodynamic forces, and they can be defined for unsteady motions as well
as quasi-steady ones. Any uncertainty about their values only reflects our lack of understanding
of the circulatory lift mechanisms, which is perhaps the major problem at present. The vortex
theories can hardly alleviate this problem since they are also plagued by it; the uncertainty
about circulation profiles is exactly equivalent to that about the force coefficients. Indeed, we
have just replaced one set of unknowns with another.

The impulse analysis of the first part of this theory is a very general method for evaluating
the mean circulatory lift, and it should prove especially useful for studies on unsteady flight
mechanisms. An impulse method was also chosen independently by Maxworthy (1979) and
Rayner (1979a) for their hovering flight studies, so there appears to be a strong convergence
on this technique. The derivation presented here, relating the local impulsive pressure to the
circulation around the wings, may provide a helpful physical interpretation of the method for
readers unfamiliar with it.

The pulsed actuator disc model of the wing action in hovering offers a unified framework
for estimating the mean force, induced velocity and induced power. The approximate
description of the wake derived from the pulsed disc is perhaps the most interesting part of the
theory, and it is also the best suited for complementary experimental studies. Many authors
have investigated the wake of flying animals using hot-wire anemometry or flow visualization
techniques (Demoll 1918; Magnan 1934; Magnan et al. 1938; Hocking 1953; Wood 1970,
1972 ; Bennett 1975, 1976; Chance 1975; Ellington 1978, 1980; Kokshaysky 1979). Although
these studies are too incomplete for a detailed evaluation of the theory, they offer a tantalizing
glimpse of the spatial and temporal variations in wake velocities and the associated vorticity.
It must be remembered that the vortex theory is solely concerned with the induced velocities
ofthe wake, however, and thata comparison with measured wake velocities isnotstraightforward.
The induced velocity reflects the downward momentum change of the air corresponding to
the lift force, but momentum must also be imparted along the direction of the relative velocity
because of the profile drag force. Thus the net wake velocities, as determined experimentally,
will be composed of nearly vertical induced velocities and largely horizontal velocities produced
by profile drag. These profile drag velocities are conveniently ignored in a vortex theory of
the wake because a separate analysis can be used to calculate the power expenditure associated
with them (paper VI).

With careful interpretation, an experimental investigation of the wake structure may
evaluate the validity of assumptions and approximations invoked for the vortex theory. Of vital
importance is an experimental test of the definition of the disc area 4,, discussed in §3.1. and
§3.2.: is it TR? or @R cos #? This problem is quite tractable for an experimental study of wake
velocities using standard techniques. Are the vortex sheets nearly horizontal, thus indicating
that the lift is effectively vertical thoughout the cycle? If not, then substantial horizontal
components will be imparted to the induced velocities, which will increase the induced power
requirement for a given weight support. The horizontal components will cause spreading of
the wake as well, disrupting the smooth contraction and simple structure assumed in the theory;
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these velocities must be present to some degree, and they are more likely to initiate spreading
than the viscous diffusion of wake vorticity discussed by Lighthill (1973). For animals hovering
with a horizontal stroke plane, are the individual vortex sheets joined together at either end
of the wingbeat by combined stopping and starting vortices, as suggested in paper IV? This
would effectively double the axial separation of radial vorticity bounding the wake, further
increasing the effect of wake periodicity on the specific induced power. This effect is probably
somewhat underestimated already in the periodicity analysis, because the assumption of
circular vortex rings reduces the perimeter of the vortex boundary and therefore decreases its
influence on the jet.

Even if future experimental studies show that the theoretical model is a crude approximation
of the wake, the specific induced power is unlikely to be affected seriously. The classic results
from propeller theories indicate that the specific induced power of a momentum jet is
remarkably insensitive to the quality of approximations used in its analysis. Estimates of PEq,
including the spatial and temporal corrections, will be presented in paper VI. For animals that
hover with a horizontal stroke plane PF 4 is usually greater than the Rankine-Froude estimate
by less than 209, which compares well with hovering helicopters (Bramwell 1976). Thus the
corrections from the second part of the theory, although providing a more satisfying physical
and conceptual description of the wake, actually yield small benefits over the elegantly simple
Rankine-Froude theory. The specific induced power for insects hovering with an inclined stroke
plane is about 609, greater than the Rankine-Froude estimate, however, because of the
enhanced wake periodicity. Further refinements of the theoretical model may somewhat
improve the accuracy of the estimates for them.

I thank Dr D. R. Moore for a useful computing trick, Dr K. E. Machin for discussions and
comments on the manuscript, and the Winston Churchill Foundation and the Science and
Engineering Research Council for financial support.
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